基于光声光谱技术的多组分气体探测研究进展
作者:
作者单位:

1.西安电子科技大学物理与光电工程学院,西安 710071;2.西安电子科技大学西安市计算成像重点实验室,西安 710071

作者简介:

通讯作者:

基金项目:


Review of Multicomponent Gas Sensors Based on Photoacoustic Spectroscopy Technology
Author:
Affiliation:

1.School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China;2.Xi’an Key Laboratory of Computational Imaging, Xidian University, Xi’an 710071, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    多组分痕量气体检测在工业、军事、农业和医疗等领域均有着重要的研究和应用价值。高性能光声光谱技术因其灵敏度高、响应快、选择性高及非接触式实时连续测量等优点受到人们的青睐。本文首先对多组分气体监测需求和光声光谱技术的主要优势和基本原理进行阐述;然后从光源分类的角度出发,介绍了现有多组分气体测量技术的最新研究进展,概括光声光谱中常用的探测方式,包括多路复用技术和干涉型傅里叶变换红外光谱等,并对其具体的适用范围和优缺点进行了对比分析。同时,针对实际应用环境中气体传感系统主要存在的光谱干扰和吸附效应的问题,介绍了相应的解决方法。最后,对光声光谱多组分探测方法的未来发展方向进行了总结和展望。

    Abstract:

    Multi-component trace gas detection has important research and application value in industrial, military, agricultural, medical and other fields. Photoacoustic spectroscopy technology is favored by researchers since its high sensitivity, fast response, high selectivity, non-contact real-time continuous measurement and other advantages. Firstly, the basic principle of acoustic spectroscopy and the demand for multicomponent gas monitoring are expounded in this manuscript. Then, in the perspective of light source classification, the existing multicomponent gas measurement technology of the latest research progress is introduced. The commonly used photoacoustic spectroscopy is also reported including multiplexing technology and Fourier transform infrared spectrum interferometric, etc. The application scope, advantages and disadvantages are compared and analyzed. At the same time, the spectral interference, adsorption-desorption effect and the corresponding solutions of the gas sensing system are introduced in view of the practical application environment. Finally, the future development of multicomponent photoacoustic spectroscopic detection methods is summarized and prospected.

    表 1 基于近红外可调谐激光器的PAS多组分气体探测能力对比Table 1 Comparison of multi-component PAS gas detection capability based on near-infrared tunable lasers
    图1 分子能级示意图[28]Fig.1 Schematic diagram of molecular level[28]
    图2 光声光谱气体检测系统示意图Fig.2 Schematic diagram of PAS gas detection system
    图3 QEPAS系统中常见的一维声学谐振腔[41]Fig.3 One-dimensional acoustic resonators in QEPAS systems[41]
    图4 苏黎世联邦理工学院多种氢化物气体光声探测系统图[45]Fig.4 Polyhydride gas photoacoustic detection system at ETH Zurich[45]
    图5 大连理工大学用于多气体分析的全光学光声光谱仪[47]Fig.5 All-optical PA spectrometer for multi-gas analysis, Dalian University of Technology[47]
    图6 SF6分解气体PAS多组分气体传感系统[49]Fig.6 SF6 decomposition gas PAS multi-component gas sensing system[49]
    图7 基于QTF和FDM技术的PAS多组分气体检测系统[51]Fig.7 PAS multi-component gas detection system based on QTF and FDM technology[51]
    图8 基于3通道多谐振腔的PAS多组分气体检测系统[52]Fig.8 PAS multi-component gas detection system based on three-channel multi-resonator[52]
    图9 莱斯大学基于DFB-QCL的QEPAS多组分气体探测系统[58]Fig.9 QEPAS multi-component gas detection system based on DFB-QCL, Rice University[58]
    图10 基于QCL和DFB激光器的频分复用QEPAS系统[60]Fig.10 FDM QEPAS system based on QCL and DFB lasers[60]
    图11 基于单个ICL激光器的三烃QEPAS气体传感器[61]Fig.11 Trihydrocarbon QEPAS gas sensor based on single ICL laser[61]
    图12 基于中红外宽带光源和DFB激光器的全光学PAS多气体分析仪[64]Fig.12 All optical PAS multi-gas analyzer based on mid-infrared broadband light source and DFB laser[64]
    图13 步进式差分FTIR-PAS气体检测系统[69]Fig.13 Step-scan differential FTIR-PAS gas detection system[69]
    图14 基于超连续谱激光器的FTIR-PAS气体检测系统[70]Fig.14 FTIR-PAS gas detection system based on supercontinuum laser[70]
    参考文献
    相似文献
    引证文献
引用本文

邵晓鹏,张乐,刘丽娴,尹旭坤,章学仕,苏永亮.基于光声光谱技术的多组分气体探测研究进展[J].数据采集与处理,2021,36(5):850-871

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-06-30
  • 最后修改日期:2021-09-03
  • 录用日期:
  • 在线发布日期: 2021-10-22