首页  |  期刊简介  |  稿件审稿流程  |  学术道德规范  |  编委会  |  征订启事  |  联系我们  |  English
中文核心期刊
中国科技论文统计源期刊
国际刊号:1004-9037
国内刊号:32-1367/TN
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式
  • 主管:中国科学技术协会
  • 主办:南京航空航天大学
  •           中国电子学会
  • 国际刊号:1004-9037
  • 国内刊号:32-1367/TN
  • 地址:南京市御道街29号
  • 电话:025-84892742
  • 传真:025-84892742
  • E-mail:sjcj@nuaa.edu.cn
  • 邮编:210016
潘志松,黎维.基于深度学习的时空序列预测方法综述[J].数据采集与处理,2021,36(3):436-448
基于深度学习的时空序列预测方法综述
Review of Spatio-Temporal Sequence Prediction Methods Based on Deep Learning
投稿时间:2021-01-20  修订日期:2021-05-10
DOI:10.16337/j.1004-9037.2021.03.003
中文关键词:  深度学习  数据挖掘  时空数据  时空序列预测
英文关键词:deep learning  data mining  spatio-temporal data  spatio-temporal sequence prediction
基金项目:国家自然科学基金(62076251)资助项目。
作者单位邮编
潘志松 陆军工程大学指挥控制工程学院 南京 210007 210007
黎维 陆军工程大学指挥控制工程学院 南京 210007 210007
摘要点击次数: 463
全文下载次数: 687
中文摘要:
      随着数据采集技术的蓬勃发展,各个领域的时空数据不断累积,迫切需要探索高效的时空数据预测方法。深度学习是一种基于人工神经网络的机器学习方法,能有效地处理大规模的复杂数据,因而研究基于深度学习的时空序列预测方法具有十分重要的意义。在这一背景下,针对已有的预测方法进行归纳和总结,首先回顾了深度学习在时空序列预测中的应用背景和发展历程,介绍了时空序列的相关定义、特点及分类;然后按照时空序列数据的类别介绍了基于网格数据的预测方法、基于图数据的预测方法和基于轨迹数据的预测方法;最后总结了上述预测方法,并对当前面临的一些问题及可能的解决方案进行了探讨。
英文摘要:
      With the vigorous development of data acquisition technology, spatio-temporal data in various fields are accumulating continuously, so it is urgent to explore efficient spatio-temporal data prediction methods. Deep learning is a machine learning method based on artificial neural networks, which can effectively process large-scale complex data. Therefore, it is of great significance to study the spatio-temporal sequence prediction methods based on deep learning. In this context, the existing prediction methods are summarized. First, the application background and development history of deep learning in spatio-temporal sequence prediction are reviewed, and the related definitions, characteristics and classification of spatio-temporal sequence are introduced. Then according to the categories of spatio-temporal sequence data, this paper introduces the prediction methods based on grid data, on graph data, and on trajectory data. Finally, the above prediction methods are summarized, and some current problems and possible solutions are discussed.
查看全文  HTML  查看/发表评论

Copyright @2010-2015《数据采集与处理》编辑部

地址:南京市御道街29号        邮编:210016

电话:025-84892742      传真:025-84892742       E-mail:sjcj@nuaa.edu.cn

您是本站第2276496位访问者 本站今日一共被访问487

技术支持:北京勤云科技发展有限公司