首页  |  期刊简介  |  稿件审稿流程  |  学术道德规范  |  编委会  |  征订启事  |  联系我们  |  English
中文核心期刊
中国科技论文统计源期刊
国际刊号:1004-9037
国内刊号:32-1367/TN
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式
  • 主管:中国科学技术协会
  • 主办:南京航空航天大学
  •           中国电子学会
  • 国际刊号:1004-9037
  • 国内刊号:32-1367/TN
  • 地址:南京市御道街29号
  • 电话:025-84892742
  • 传真:025-84892742
  • E-mail:sjcj@nuaa.edu.cn
  • 邮编:210016
曹国刚,朱信玉,陈颖,曹聪,孔德卿.基于改进头脑风暴优化算法的医学图像配准方法[J].数据采集与处理,2020,35(4):730-738
基于改进头脑风暴优化算法的医学图像配准方法
Medical Image Registration Based on Improved Brain Storm Optimization Algorithm
投稿时间:2020-01-13  修订日期:2020-06-22
DOI:10.16337/j.1004-9037.2020.04.014
中文关键词:  医学图像配准  单纯形搜索法  互信息  头脑风暴优化算法  多分辨率
英文关键词:medical image registration  Simplex method  mutual information (MI)  brain storm optimization (BSO) algorithm  multi-resolution
基金项目:国家自然科学基金(61976140)资助项目;上海应用技术大学协同创新基金(XTCX2019-14)资助项目。
作者单位邮编
曹国刚 上海应用技术大学计算机科学与信息工程学院上海,201418 201418
朱信玉 上海应用技术大学计算机科学与信息工程学院上海,201418 201418
陈颖 上海应用技术大学计算机科学与信息工程学院上海,201418 201418
曹聪 上海应用技术大学计算机科学与信息工程学院上海,201418 201418
孔德卿 上海应用技术大学计算机科学与信息工程学院上海,201418 201418
摘要点击次数: 93
全文下载次数: 157
中文摘要:
      针对精准医疗中图像配准方法收敛速度慢、精度不够高的问题,提出一种基于改进头脑风暴优化(Improved brain storm optimization, IBSO)算法的医学图像配准方法。配准过程分为3个阶段:首先,将待配准图像进行多分辨率分解;然后,使用IBSO算法对低分辨率图像进行全局粗配准;最后,利用单纯形搜索法对高分辨图像精配准。相比粒子群和单纯形结合算法、差分进化和Powell结合算法,以及头脑风暴和Powell结合算法,在单模态实验中,所提算法平均耗时较以上3种算法分别降低了32.89%、13.91%和13.66%,且最大误差、平均误差最小;在多模态实验中,互信息、归一化互信息、交叉累计剩余熵与归一化互相关指数均优于上述3种配准算法。实验结果表明,所提算法可以有效地提升医学图像配准的精度与速度。
英文摘要:
      Aiming at the problem of slow convergence and low accuracy of image registration method in precision medicine, a registration method based on improved brain storm optimization(IBSO) algorithm is proposed. The new registration includes three steps. Firstly, the unregistered images are decomposed into multi-resolution images. Then, the IBSO algorithm is used for global coarse registration of low-resolution images. Finally, the Simplex is utilized to fine registration of high-resolution images. Compared with methods of particle swarm optimization combined with Simplex, differential evolution algorithm combined with Powell, and brain storm optimization combined with Powell, the average running time of the proposed algorithm reduces by 32.89%, 13.91% and 13.66% respectively in the mono-modality registration experiment, in which the maximum error and the average error are minimum too. It also outperforms the above three registration algorithms in multi-modality registration experiments, in which the measures of mutual information (MI), normalized mutual information (NMI), cross cumulative residual entropy (CCRE) and normalization cross-correlation (NCC) are best in all. Experiments show that the proposed algorithm effectively improves the accuracy and speed of medical image registration.
查看全文  HTML  查看/发表评论

Copyright @2010-2015《数据采集与处理》编辑部

地址:南京市御道街29号        邮编:210016

电话:025-84892742      传真:025-84892742       E-mail:sjcj@nuaa.edu.cn

您是本站第1823761位访问者 本站今日一共被访问80

技术支持:北京勤云科技发展有限公司