首页  |  期刊简介  |  稿件审稿流程  |  学术道德规范  |  编委会  |  征订启事  |  联系我们  |  English
中文核心期刊
中国科技论文统计源期刊
国际刊号:1004-9037
国内刊号:32-1367/TN
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式
  • 主管:中国科学技术协会
  • 主办:南京航空航天大学
  •           中国电子学会
  • 国际刊号:1004-9037
  • 国内刊号:32-1367/TN
  • 地址:南京市御道街29号
  • 电话:025-84892742
  • 传真:025-84892742
  • E-mail:sjcj@nuaa.edu.cn
  • 邮编:210016
杜秀丽,司增辉,左思铭,邱少明.基于截断核范数低秩分解的自适应字典学习算法[J].数据采集与处理,2020,35(4):603-612
基于截断核范数低秩分解的自适应字典学习算法
Adaptive Dictionary Learning Algorithm Based on Truncated Nuclear Norm and Low Rank Decomposition
投稿时间:2020-04-29  修订日期:2020-06-29
DOI:10.16337/j.1004-9037.2020.04.002
中文关键词:  低秩稀疏分解  截断核范数  压缩感知  K-奇异值分解
英文关键词:low rank sparse decomposition  truncated nuclear norm  compressed sensing  K-singular value decomposition( K-SVD)
基金项目:辽宁省百千万人才工程(2018921080)资助项目。
作者单位邮编
杜秀丽 大连大学通信与网络重点实验室大连116622
大连大学信息工程学院大连116622 
116622
司增辉 大连大学通信与网络重点实验室大连116622
大连大学信息工程学院大连116622 
116622
左思铭 大连大学通信与网络重点实验室大连116622
大连大学信息工程学院大连116622 
116622
邱少明 大连大学通信与网络重点实验室大连116622
大连大学信息工程学院大连116622 
116622
摘要点击次数: 147
全文下载次数: 209
中文摘要:
      针对过完备字典直接对图像进行稀疏表示不能很好地剔除高频噪声的影响,压缩感知后图像重构质量不高的问题,提出了基于截断核范数低秩分解的自适应字典学习算法。该算法首先利用截断核范数正则化低秩分解模型对图像矩阵低秩分解得到低秩部分和稀疏部分,其中低秩部分保留了图像的主要信息,稀疏部分主要包含高频噪声及部分物体轮廓信息;然后对图像低秩部分进行分块,依据图像块纹理复杂度对图像块进行分类;最后使用K奇异值分解(K-single value decomposition, K-SVD)字典学习算法,针对不同类别训练出多个不同大小的过完备字典。仿真结果表明,本文所提算法能够对图像进行较好的稀疏表示,并在很好地保持图像块特征一致性的同时显著提升图像重构质量。
英文摘要:
      Aiming at the problem that the direct sparse representation of the over-complete dictionary on the image cannot effectively remove the effect of high-frequency noise, and the image reconstruction quality after compressed sensing is not high, an adaptive dictionary learning algorithm based on truncated nuclear norm and low rank decomposition is proposed. The algorithm firstly uses the truncated nuclear norm regularization low-rank decomposition model to decompose the low-rank part and sparse part of the image matrix. The low-rank part retains the main information of the image, and the sparse part mainly contains high-frequency noise and some object contour information. Then, the low-rank part of the image is divided into blocks, and the image blocks are classified according to the texture complexity of the image block. Finally, a K-single value decomposition(K-SVD) dictionary learning algorithm is used to train multiple over-complete dictionaries of different sizes for different categories. Simulation results show that the proposed algorithm can perform better sparse representation of the image, while significantly maintaining the consistency of image block features and significantly improving the quality of image reconstruction.
查看全文  HTML  查看/发表评论

Copyright @2010-2015《数据采集与处理》编辑部

地址:南京市御道街29号        邮编:210016

电话:025-84892742      传真:025-84892742       E-mail:sjcj@nuaa.edu.cn

您是本站第1823859位访问者 本站今日一共被访问141

技术支持:北京勤云科技发展有限公司