Angle Estimation Algorithm for MIMO Radar Using Three-Way Compressive Sensing

Wen Fangqing¹,², Zhang Gong¹, Wang Xinhai¹, Zhang Yu¹, Ben De¹

(1. College of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211016, China; 2. Electronic and Information School, Yangtze University, Jingzhou, 434023, China)

Abstract: Tensor model-based parameters estimation is a trend for radar signal processing. However, the existing tensor-model based algorithms cannot achieve a good compromise between estimation accuracy and computational complexity. A three-way compressive sensing (TWCS) based algorithm is developed for angle estimation in multiple-input multiple-output radar. Exploiting the multidimensional structure inherent in the matched filtered data, a third-order tensor signal model is formulated. To lower the storage and computing complexity, the high-order singular value decomposition method is used to compress the tensor data. The kernel tensor is linked to the trilinear model thus the compressed direction matrices are obtained. Thereafter, the sparsity of the targets in the background is utilized and two overcomplete dictionaries are constructed for angle estimation with optimization methods. Taking advantage of the inherent multidimensional structure of the received data, the TWCS algorithm achieves better estimation accuracy than traditional subspace-based algorithms. In addition, the TWCS algorithm does not re-
引言

与传统相控阵的机制不同，多输入多输出（Multiple-input multiple-output，MIMO）雷达巧妙地利用多根天线发射近似相互正交的波形，在多根接收天线端，分别采用匹配滤波器分离目标信息。多天线的使用使得 MIMO 雷达系统的自由度增大，因而相相关控阵体制的雷达系统，MIMO 雷达系统的探测性能显著提升。理论研究表明，MIMO 雷达具有抑制噪声和干扰、抗衰落效应等多方面的优势。此外 MIMO 雷达还能有效地提高目标的分辨率和参数估计的可辨识度，因而 MIMO 雷达的研究引起国内外学者的广泛关注。

本文主要探讨双基地 MIMO 雷达中的联合波离角（Direction-of-departure，DOD）与波达角（Direction-of-arrival，DOA）估计问题。联合角度估计是双基地 MIMO 雷达中多目标进行测向与定位的任务之一。MIMO 雷达中典型的估计算法有 Capon、多重信号分类（Multiple signal classification，MUSIC）、基于旋转不变技术的估计算法（Estimation method of signal parameters via rotational invariance techniques，ESPRIT）及相关改进算法，其主要由传统阵列信号处理的方法演化而来。其中，Capon 算法和 MUSIC 算法主要是通过二维谱峰搜索获得目标参数，这类算法的劣势主要在于其计算复杂度非常大。ESPRIT 算法主要利用了两个子阵列的旋转不变特性，尽管它可避免谱峰搜索过程，但是其需要额外匹配所估计的角度。上述算法均是将阵列雷达数据堆叠成高维矩阵，然后对高维矩阵进行处理，这些算法均忽略了接收数据内部的多维结构特性。近年来，将张量模型引入阵列多参数估计是 MIMO 雷达一个研究热点方向。通过构建接收信号的张量结构可以利用数据内部蕴含的特性，因此可以提升角度估计精度。张量分解的方法主要有两种：Tucker 分解和 CP 分解，其中 Tucker 分解又被称为高阶奇异值分解（High-order singular value decomposition，HOSVD），CP 分解是典型分解/平行因子分解（Canonical or parallel factor analysis，CANDECOMP/PARAFAC）的简称。HOSVD 将三维数据向 3 个不同的方向分别展开，然后分别对得到的矩阵进行子空间分解，这种子空间方法获得的子空间比直接对某个方向展开的矩阵数据进行子空间分解更精确，从而角度估计精度比 ESPRIT 更为精确。PARAFAC 算法采用迭代的方法进行张量分解，相比 HOSVD 算法，其不需要计算复杂度较高奇异值分解过程，且参数估计的精度更高。然而 PARAFAC 算法在低信噪比条件下精度较低，且在大规模 MIMO 或者超大规模 MIMO 系统时计算量较大，数据的存储和计算将占用更多的资源，这对雷达系统是非常大的挑战。近年来，将压缩感知理论应用于雷达信号处理是雷达系统发展的一个趋势，目标参数的稀疏特性为获取相关参数的估计开辟了一种新的道路。受启发于多维压缩感知的概念，文献[24, 25]提出基于压缩的平行因子分解算法，大大降低了三维性分解的计算复杂度。但上述算法均利用随机降维观测矩阵对高维张量进行降维处理，角度估计时采用匹配过完备字典的方法进行。上述算法的压缩矩阵产生较为复杂，且过完备字典的匹配过程类似于 MUSIC 算法的二维谱峰搜索，计算复杂度较大。

针对现有 MIMO 雷达角度估计方法存在计算精度与计算复杂度难以折衷的问题，本文提出一种三维压缩感知（Three-way compressive sensing，TWCS）算法。本文的压缩矩阵采用 HOSVD 获取，其能最大程度地压缩高维张量数据，且保证低信噪比下参数估计的精度。二维角度估计问题与压缩后的张量模型相联系，通过三线性交替最小二乘（Trilinear alternate least squares，TALS）获取压缩后的方向矩阵。
阵的估计。最后构造两个独立的过完备字典，利用目标的稀疏性重构目标二维角度。所提 TWCS 算法在计算复杂度方面略高于文献[14]所提的 HOUSD 方法，但低于文献[16]所提的 PARAFAC 算法。本文算法 TALS 过程数据量远低于 PARAFAC 算法，且本文算法能自动配对所估计的二维角度。TWCS 在计算精度方面高于 ESPRIT 和 HOSVD，在高信噪比条件下与 PARAFAC 相差越近，在低信噪比条件下优于 PARAFAC。本文算法可以通过进一步处理获得目标多普勒信息，因而所提的算法是一种高效的算法。

1 张量基础与信号模型

1.1 张量基础

首先引用文献[13]中关于张量操作的 3 个定义：

定义 1（张量展开）：令 $X \in \mathbb{C}^{l_1 \times \cdots \times l_k}$ 为一个 N 阶张量，X 的模- $n (n = 1, \cdots, N)$ 矩阵展开表示为 $[X]_n$。

其中，是张量 X 的 (i_1, \cdots, i_k) 位置的 X 的 (i_1, \cdots, i_k) 位置的元素成为位于矩阵 $[X]_n$ 的 (i_1, \cdots, i_k) 位置的元素 $j = 1 + \sum_{k=1}^{N} \sum_{I_{k,n} \neq n} (i_k - 1) J_k$ 且 $J_k = \prod_{m=1}^{k-1} I_{m,n}^n$。

定义 2（模- n 张量与矩阵乘积）：定义 N 阶张量 $X \in \mathbb{C}^{l_1 \times \cdots \times l_k}$ 与矩阵 $A \in \mathbb{C}^{l_1 \times l_k}$ 的模- n 乘积为 $Y = X_X \cdot A$，其中 $Y \in \mathbb{C}^{l_1 \times \cdots \times l_k}$ 且 $Y_{i_1, \cdots, i_k} = \sum_{l_1, \cdots, l_k} X_{i_1, \cdots, l_1, \cdots, l_k} \cdot A_{l_1, \cdots, l_k}$。

定义 3（张量模乘性质）：N 阶张量 $X \in \mathbb{C}^{l_1 \times \cdots \times l_k}$ 的模乘性质主要有如下两条

$$X_X \cdot A \cdot B = X_X \cdot B \cdot A \quad m \neq n$$

$$X_X \cdot A \cdot B = X_X \cdot (B \cdot A)$$

(1)

(2)

1.2 信号模型

本文所提双基地 MIMO 雷达的联合 DOD 与 DOA 估计的信号模型如图 1 中所示。假设天线系统由 M 个发射阵元和 N 个接收阵元构成，二者都是均匀线性阵列（Uniform linear array，ULA）。为防止相位畸变，发射、接收阵元均以 $\frac{\lambda}{2}$ 的间距等距排列，λ 为发射波波长。若 K 个非相干目标位于雷达基阵所在位置，且第 $k (1 \leq k \leq K)$ 个点目标的方位是 (ϕ_k, θ_k)，其中 ϕ_k 为目标相对发射天线阵列的 DOD，θ_k 为目标相对于接收阵列的 DOA。假设发射天线阵列使用相同的载频发射理想正交的窄带波形，则对第 $n(n = 1, \cdots, N)$ 个接收阵元的接收信号进行匹配滤波的输出可表示为

$$r_k(t) = \sum_{k=1}^{N} a^*_k(\phi_k) a_n(\phi_k) s_k(t)$$

(3)

式中 $a^*_k(\phi_k) = \exp(-j(n-1)\pi \sin \phi_k)$ 为第 n 个接收天线接收的第 k 目标点的相位相对于参考相位的相移；$a_n(\phi_k) = [a_1^*(\phi_k), \cdots, a_M^*(\phi_k)]^T \in \mathbb{C}^{K \times 1}$ 为发射导引矢量，$a_n^*(\phi_k) = \exp(-j(m-1)\pi \sin \phi_k)$ 为发射导引矢量 $a_k(\phi_k)$ 的第 $m (m = 1, \cdots, M)$ 个元素；回波函数 $s_k(t) = a_k \exp(j2\pi f_k t / f_c)$，$a_k$ 为第 k 个点目标的雷达截面系数（Radar cross section，RCS），f_k 为第 k 个点目标的多普勒频率，f_c 为发射波形的脉冲重复频率。定义 $a_n(\phi_k) = [a_1^*(\phi_k), \cdots, a_M^*(\phi_k)]^T \in \mathbb{C}^{K \times 1}$ 为阵列接收导引矢量，将所有接收阵元的匹配滤波后的信号排列为 $x(t) = [r_1(t), r_2(t), \cdots, r_N(t), \cdots, r_N(t)]^T \in \mathbb{C}^{N \times 1}$ 为阵列接收导引矢量，将所有接收阵元的匹配滤波后的信号排列为 $x(t) = [a_n, a_n(\phi_k), \cdots, a_n(\phi_k)] \cdot s(t)$

(4)

式中，$\circ \circ$ 代表克罗内克积。令所有目标系数构成矩阵 $S = [s(1), \cdots, s(L)]^T \in \mathbb{C}^{L \times K}$，并假设所有目标

![图 1 双基地 MIMO 雷达角度估计模型](image)

Fig. 1 Angle estimation model for bistatic MIMO radar
数据采集与处理 Journal of Data Acquisition and Processing Vol. 33, No. 2, 2018

的 RCS 在 L 个接收快拍内满足经典的 Swerling-I（慢起伏）模型。如果定义接收方向矩阵为
\[A_k = [a_r(\theta_i), \cdots, a_r(\theta_K)] \in \mathbb{C}^{N \times K}, \]
发射方向矩阵为 \[A_r = [a_r(\varphi_i), \cdots, a_r(\varphi_K)] \in \mathbb{C}^{M \times K}, \]
则无噪声条件下数据矩阵 \[X = [x(1), \cdots, x(L)] \] 可以表示为
\[X = [a_r(\varphi_k) \circ [a_r(\theta_k) \otimes \cdots], a_r(\varphi_k)] S^T = [A_r \circ A_r] S^T = A S^T \]
式中；\[A = [A_r \circ A_r] = [a_r(\varphi_k) \circ [a_r(\theta_k) \otimes \cdots], a_r(\varphi_k)] \]
可以被视为维数为 \(MN \times K \) 的虚拟方向矩阵，其中 \(\otimes \) 为 Khatri-Rao 积（按列克罗内克积）。\(a_r(\varphi_k) = a_r(\varphi_k) \circ a_r(\varphi_k) \) 可被视为虚拟的导向矢量。利用 Tucker 张量模型，式(5)可以重新表述成一个阶数为 3，秩为 K 的张量
\[X_{m,n,l} = \sum_{k=1}^{K} A_r(m,k) A_r(n,k) S(l,k) \quad m = 1, \cdots, M; n = 1, \cdots, N; l = 1, \cdots, L \]
式(6)即为三线性模型的张量表示形式。此外，张量模型也可以表示成矢量的形式
\[\text{vec}(X) = (S \circ A_r \circ A_r)^T \]
式中 vec(•) 为矢量化操作。结合定义 1 可以看出 \[X = [X]^T, \]
即式(5)中的矩阵为式(6)中张量的模-3 展开。ESPRIT 算法即在式(5)的基础上进行参数估计，它利用了虚拟方向矩阵 \(A \) 中虚拟导向矢量的旋转不变性。但式(5)只利用了张量数据的三维结构，因此其估计精度有待于进一步提升。事实上，式(5)可以看作沿着快拍方向切片式(6)中张量。定义定义 1，沿着发射方向切片张量可得
\[Y = [X]^T = [S \circ A_r] A_r^T \]
类似地，沿着接收方向切片数据可得
\[Z = [X]^T = [A_r \circ S] A_r^T \]
一般也均式(5, 8, 9)称为三线性分解的矩阵表示形式，其与式(6)中的张量形式和式(7)中的矢量形式是等价的。通过对 \(X \) 进行 PARAFAC 可以分别估计出发射方向矢量和接收方向矢量，再通过自动配对的方法即可获得相关角度的估计。PARAFAC 算法的缺点是在低信噪比时估计精度低。当数据量非常大时 PARAFAC 算法的计算复杂度急剧上升。为降低数据存储的压力，同时降低 PARAFAC 的计算复杂度，本文利用三维压缩感知的方法压缩张量数据，并提升 PARAFAC 在低信噪比条件下的估计精度。

2 本文算法

2.1 基于 HOSVD 的张量压缩

对式(6)中的 3 阶张量 \(X \) 进行 HOSVD 可以表示为如下形式
\[X = Y_{1,1} \cdot U_{2,1} \cdot V_{3,1} \cdot W \]
式中，\(Y \in \mathbb{C}^{M \times N \times L} \) 为核张量，\(U \in \mathbb{C}^{M \times K}, V \in \mathbb{C}^{N \times K}, W \in \mathbb{C}^{L \times K} \) 分别为 3 个西矩阵，其分别为 \(X \) 的模 \(i (i = 1, 2, 3) \) 展开的左奇异分解矩阵组成。类似于 MUSIC 算法中的 SVD，由于 \(X \) 是 K 秩的，因此高维张量 \(X \) 可由其主成分量 \(X' \in \mathbb{C}^{K \times K \times K} \) 表示
\[X' = X_{1,1} \cdot [U^H]_{2,2} \cdot [V^H]_{3,3} \cdot W^H \]
式中，\(U \in \mathbb{C}^{M \times K}, V \in \mathbb{C}^{N \times K} \) 和 \(W \in \mathbb{C}^{L \times K} \) 分别为 \(U, V \) 和 \(W \) 中的前 K 特征矢量构成的矩阵。将式(11)中的张量表示成矢量形式可得
\[\text{vec}(X') = (W^H \otimes V^H \otimes U^H) \text{vec}(X) = (W^H \otimes V^H \otimes U^H) (S \circ A_r \circ A_r) = (W^H S) \otimes (V^H A_r) \otimes (U^H A_r) = S \circ A_r \circ A_r \]
式中：\(S = W^H S, A_r = V^H A_r, A_r = U^H A_r \) 分别表示压缩后的特征系数矩阵。压缩后的接收矩阵和压缩后的接收矩阵的维数均为 \(K \times K \)。由于 \(K < \min\{M, N, L\} \)，因此可以看作是一个降维压缩过程，如图 2 所示。其将一个三阶高维张量压缩成一个三阶低维张量，大大降低了数据的存储和计算的复杂度。本文中的参数估计问题可以看作是一个三维压缩感知的问题。\(W^H, V^H \) 和 \(U^H \) 为三维压缩感知中的压缩测量。
矩阵。

结合定义 2 与定义 3, 可得对应式 (5) 中压缩后沿快拍方向的切片矩阵表示为

$$X = [X']_T = [\bar{A}_k \circ \bar{A}_\tau] S^T = [V]^H \circ U^H] \cdot [X']_T \cdot W^T$$

（13）

由于三线性模型的张量形式和矩阵形式是等价的, 因此可由式 (13) 中的矩阵形式重新构造压缩后的张量。此时对应于式 (8) 中压缩后沿发射方向的切片数据矩阵为

$$Y = [X']_T = [S \circ \bar{A}_k] \bar{A}_\tau^T$$

（14）

类似地，对应于式 (9) 的压缩后沿接收方向切片数据为

$$Z = [X']_T = [\bar{A}_\tau \circ S] \bar{A}_k^T$$

（15）

由于目标的角度信息体现在发射方向矩阵和接收方向矩阵的相位中，因此当获取对 A_τ 和 A_k 的估计后方可获得对目标 DOD 与 DOA 估计。所提算法的求解思路分为两个步骤，首先估计压缩后的方向矩阵 A_τ 和 A_k，再通过原始方向矩阵与压缩后的方向矩阵间的关系估计出原始方向矩阵，最后配对目标的角度。

2.2 压缩的方向矩阵估计

本文采用 TALS 算法估计压缩后的方向矩阵。TALS 采用最小二乘（Least squares, LS）的方法交替拟合 3 个矩阵，当拟合误差达到预定范围内时算法终止。其处理本文压缩后的三线性模型的流程如下：(1) 假设 X, Y 和 Z 中的两个矩阵已知，采用 LS 的方法拟合其中的某个矩阵；(2) 采用 LS 的方法拟合剩下的两个矩阵；(3) 重复步骤 (1, 2) 直到拟合误差达到预定的阈值。现以算法具体迭代过程说明 TALS 的工作原理，根据式 (13) 可知，在噪声条件下 X 拟合的代价函数和 S 的 LS 估计值为

$$\min_{\bar{A}_k, \bar{A}_\tau} \|X - [\bar{A}_k \circ \bar{A}_\tau] S^T\|^F$$

$$\hat{S}^T = [\bar{A}_k \circ \bar{A}_\tau] \hat{X}$$

式中: \hat{X} 表示在噪声条件下得到的压缩数据矩阵 X, $\|\cdot\|^F$ 表示 Frobenius 范数, \hat{A}_k 和 \hat{A}_τ 分别表示前一轮迭代结束后获得的 A_k 和 A_τ 的估计值。同理，根据式 (14) 可知 LS 拟合 Y 的代价函数和 A_τ 的 LS 估计分别为

$$\min_{\hat{A}_\tau, \bar{A}_k} \|Y - [\bar{A}_\tau \circ \bar{A}_k] S^T\|^F$$

$$\hat{A}_\tau^T = [\bar{S} \circ \bar{A}_k] \hat{Y}$$

式中, \hat{Y} 表示含噪声的切片数据矩阵 Y, \hat{A}_τ 为本次迭代过程获得的 S 的估计值, \hat{A}_k 为上轮迭代结束后获得 A_k 的估计值。类似地，根据式 (15) 可知 LS 拟合 Z 的代价函数和矩阵 A_k 的 LS 估计

$$\min_{\bar{A}_k, \bar{A}_\tau} \|Z - [\bar{A}_\tau \circ S] \bar{A}_k^T\|^F$$

$$\hat{A}_k = [\bar{A}_\tau \circ \bar{S}] \hat{Z}$$

式中, \hat{Z} 表示含噪声条件下的数据矩阵 Z, \hat{A}_τ 和 \hat{S} 分别为本轮拟合过程中获得的 A_τ 和 S 的估计值。

在算法的初始化过程中，\hat{A}_τ, \hat{A}_k 和 \hat{S} 被初始化为某个固定矩阵，随着算法的进行，其最终都趋于稳定。三线性分解的唯一性是其重要特征，定理 1 给出了 \hat{A}_τ, \hat{A}_k 和 \hat{S} 的估计值唯一性的条件。

定理 1 对于式 (12) 中的三线性模型，如果 \hat{A}_τ, \hat{A}_k 和 S 都是满秩的，且其秩分别为 k_τ, k_k 和 k_S, 若矩阵的秩满足

$$k_\tau + k_k + k_S \geq 2K + 2$$

则除了列模糊和尺度模糊之外，三线性分解的 \hat{A}_τ, \hat{A}_k 和 S 是唯一的。若 \hat{A}_τ, \hat{A}_k 和 S 分别为对应的估计值，则定理 1 中的列模糊和尺度模糊可以表示为 $\hat{A}_\tau = \bar{A}_\tau H_\tau + N_\tau$, $\hat{A}_k = \bar{A}_k H_k + N_k$ 和 $\hat{S} = \bar{S} H_S + N_S$, 其中 H 为一个列置换矩阵, N_τ, N_k 和 N_S 分别为对应的列误差。A_τ, A_k 和 A_S 分别为 3 个尺度模糊矩阵，其对角线上的元素分别为所估计的 3 个矩阵的尺度模糊系数, 且 3 个对角矩阵满足 $A_\tau A_k A_S = I_k$。

2.3 基于稀疏表示的联合 DOD 与 DOA 估计

在 TALS 完成之后，即可得到 \hat{A}_τ 和 \hat{A}_k 的估计值。根据式 (12) 关系，可以通过构造预完备字典，再
使用字典匹配的方法重构出目标的 DOD 和 DOA。将目标所有可能的 DOD 离散化为 \(\phi_1, \phi_2, \cdots, \phi_N \)，将所有可能的 DOA 离散化为 \(\theta_1, \theta_2, \cdots, \theta_L \) (\(K \ll L \)), 则两个过完字典可以分别表示为

\[
\begin{align*}
A'_{\tau} &= [a(\phi_1), \cdots, a(\phi_N)] \\
A'_{r} &= [a(\theta_1), \cdots, a(\theta_L)]
\end{align*}
\]

式中：字典矩阵 \(A'_{\tau} \) 的第 \(g_i=1, \cdots, G_i \) 个导引矢量为 \(a_i(\phi_n) = [a^1_i(\phi_n), \cdots, a^M_i(\phi_n)]^T \)，字典矩阵 \(A'_{r} \) 的第 \(g_i=1, \cdots, G_i \) 个导引矢量为 \(a_i(\theta_n) = [a^1_i(\theta_n), \cdots, a^N_i(\theta_n)]^T \)。如果第 \(k \) 个目标恰好位于方位 \((\phi_n, \theta_k) \)，则有 \(a_i(\phi_n) = U^H a_i(\phi_n) \cdot a_i(\theta_k) = V^H a_i(\theta_k) \)，其中 \(a_i(\theta_k) \) 为对应 \(A_r \) 中的导引矢量，\(a_i(\phi_n) \) 为对应 \(A_{\tau} \) 中的导引矢量。因此，根据定理 1 可知 \(\tilde{A}_{\tau} \) 与 \(A'_{\tau} \), \(\tilde{A}_{r} \) 与 \(A'_{r} \) 有如下关系

\[
\begin{align*}
\tilde{A}_{\tau} &= U^H A'_{\tau} \eta_1 + \bar{N}_1 \\
\tilde{A}_{r} &= V^H A'_{r} \eta_2 + \bar{N}_2
\end{align*}
\]

式中：\(\bar{N}_1 \) 和 \(\bar{N}_2 \) 分别为压缩后的噪声矩阵，\(\eta_1 \in \mathbb{C}^{G \times 1}, \eta_2 \in \mathbb{C}^{G \times 1} \) 均为稀疏度为 K 的向量，根据 \(\eta_1 \) 和 \(\eta_2 \) 中非零元素在字典中的位置就可分别获取目标的 DOD 与 DOA。对第 \(k (1 \leq k \leq K) \) 个目标进行联合 DOD 与 DOA 角度估计可以通过优化如下差分问题来完成

\[
\begin{align*}
\bar{\phi}_k &= \min \| a_i(\phi_n) - U^H A'_{\tau} w_1 \|_2 \quad \text{s. t. } \| w_1 \|_0 = 1 \\
\bar{\theta}_k &= \min \| a_i(\theta_k) - V^H A'_{r} w_2 \|_2 \quad \text{s. t. } \| w_2 \|_0 = 1
\end{align*}
\]

式中：\(\bar{a}_i(\phi_n) \) 与 \(\bar{a}_i(\theta_k) \) 分别为对应 \(a_i(\phi_n) \) 与 \(a_i(\theta_k) \) 的估计，\(\| \cdot \|_0 \) 为 0 范数约束，\(w_1 \) 与 \(w_2 \) 分别为两个稀疏度均为 1 的稀疏矢量。

注意到 \(\bar{S} \) 与 \(A_{\tau} \) 与 \(A_r \) 具有类似的性质；因此采用类似的方法可以获得目标的多普勒信息，本文不再赘述。现将本文所提算法的具体步骤归纳如下：

（1）把接收数据按式（6）堆叠成一个三阶张量；
（2）利用式（10）对张量进行 HOSVD，按照式（12）对原始张量进行压缩处理；
（3）初始化 \(A'_{\tau}, \tilde{A}_{r} \) 和 \(\tilde{S} \) 为随机矩阵；分别按照式（16～18）的 TALS 算法更新 \(\tilde{S}, \tilde{A}_{\tau} \) 和 \(\tilde{A}_{r} \)，再计算拟合误差 \(\| \tilde{X} - [\tilde{A}_{\tau} \odot \tilde{A}_{r}] \tilde{S}^T \|_F \)。重复这一过程至拟合误差小于预设的阈值；
（4）按照式（20）构造过完字典，最后按照式（22）计算 DOD 与 DOA。

3 算法分析

3.1 复杂度分析

经典的 Capon 与 MUSIC 算法均需要谱峰搜索过程，复杂度过高，在讨论本文算法计算复杂度时不同这两种算法进行对比。ESPRIT 算法的计算主要为 SVD，其复杂度为 \(O(MNLMK) \) [15]。HOSVD 算法的计算复杂度为 SVD 算法的三倍，为 \(O(3MLNK) \) [15]，仍然与 ESPRIT 在相同的数量级。传统 PARAFAC 算法的计算复杂度主要在 TALS 过程 [18]，其计算复杂度为 \(O(3MLNK^2) \)，其中 \(I \) 为 TALS 迭代的次数，一般算法迭代 20 次内即可收敛。而本文算法主要集中在 HOSVD 和 TALS 上，在 HOSVD 算法的基础上增加压缩后 TALS 算法迭代的计算复杂度，因而本文算法的复杂度是 \(O(3MLNK + 3K^2 I) \)。相较而言，本文算法的复杂度略高于 HOSVD 方法，但低于传统 PARAFAC 算法。

3.2 克拉美多瑞斯分析

根据文献 [27]，双基地 MIMO 雷达中联合 DOD 与 DOA 估计的克拉美多瑞斯 (Cramér-Rao bound, CRB) 为

\[
CRB = \frac{\sigma^2}{2} \text{Re} \left(\begin{bmatrix} D^H P^* D \end{bmatrix} + W \right)^{-1}
\]

式中：\(\odot \) 表示 Hadamard 积 (相同位置的元素进行乘积运算)，\(\sigma^2 \) 为接收的信号中高斯白噪声功率的大小，

\[
A = [a(\theta_1, \phi_1), \cdots, a(\theta_K, \phi_N)] ,
D = \begin{bmatrix}
\frac{\partial a(\theta_1, \phi_1)}{\partial \theta_1}, \cdots, \frac{\partial a(\theta_1, \phi_1)}{\partial \theta_K}, \cdots,
\frac{\partial a(\theta_K, \phi_1)}{\partial \phi_1}, \cdots, \frac{\partial a(\theta_K, \phi_N)}{\partial \phi_N}
\end{bmatrix}
\]
\[P_k = I_{MN} - A(A^H A)^{-1} A^H, W = \frac{SS^H}{L}. \]

3.3 算法优势分析

相比 ESPRIT, HOSVD 和 PARAFAC, 本文所提算法的优势主要有:
(1) 自动匹配维度角度;
(2) 低信噪比下估计精度更高;
(3) 可获得目标的多普勒信息;
(4) 使大规模阵列或大快拍条件下计算复杂度更低, 所需存储资源更少。

4 仿真结果及分析

为证明所提算法的有效性，使用蒙特卡洛仿真和方法进行来比较各种算法的性能。仿真中假设 \(K = 3 \) 个目标处于远场, 其 DOA 和 DOD 分别为 \((\theta_1, \varphi_1) = (20^\circ, 25^\circ), (\theta_2, \varphi_2) = (30^\circ, 35^\circ) \) 和 \((\theta_3, \varphi_3) = (40^\circ, 45^\circ) \), 其多普勒频移分别为 0.1, 0.2 和 0.4。仿真实验中 \(M, N \) 和 \(L \) 分别代表发送单元的个数和接收单元的个数和快拍数目。本文的过完备字典是将 1000 次蒙特卡洛仿真后计算所得, 仿真中的信噪比 (Signal-to-noise ratio, SNR) 定义为 \(\text{SNR} = 10 \log_{10} \left(\frac{\| \mathbf{x} \|^2}{\| \mathbf{x} - \hat{\mathbf{x}} \|^2} \right) \). 角度估计的精度用方均根误差 (Root mean squared error, RMSE) 评价, 其定义为

\[
\text{RMSE} = \frac{1}{K} \sum_{k=1}^{K} \sqrt{1 \cdot \frac{1}{1000} \sum_{i=1}^{1000} \left(\left(\hat{\theta}_{i,k} - \theta_i \right)^2 + \left(\hat{\varphi}_{i,k} - \varphi_i \right)^2 \right)}
\]

其中 \(\hat{\theta}_{i,k} \) 和 \(\hat{\varphi}_{i,k} \) 分别为第 \(i \) 次蒙特卡洛仿真中获得的对 \(\theta_i \) 与 \(\varphi_i \) 的估计。

图 3 为所提算法在信噪比为 -10 dB 时联合 DOD 与 DOA 的估计效果。图中黑点表示估计的角度位置, ‘X’ 表示真实的目标位置。可以看出 3 个目标的 DOD 和 DOA 可以清楚地被估计出来, 并且被正确对准。

图 4 与图 5 分别为本文算法在不同 SNR 下与其他算法 RMSE 的对比。对比的算法有 ESPRIT 算法, HOSVD 算法, PARAFAC 算法和 CRB。由图 4 和图 5 可知, 如果信噪比提高, 所有算法的精度都会提升。由于利用了数据的多维结构, 基于张量的算法精度均优于 ESPRIT 算法, 且本文算法性能优于 HOSVD 算法和 ESPRIT 算法。由于压缩过程获得的张量空间具有鲁棒性, 因而本文所提算法在低信噪比条件下性能优于 PARAFAC 算法, 特别是阵元数目较少时, 这种优势显得尤为明显。当信噪比提升后, 所提算法性能仍然很接近 PARAFAC 算法。图 6 为所提算法与其他算法在不同 \(L \) 条件下的效果比较。

图 3 SNR = -10 dB 所提算法散点图 (M = 20, N = 16, L = 64)
图 4 不同 SNR 下 RMSE 比较 (M = 20, N = 16, L = 64)
图 5 不同 SNR 下 RMSE 比较 (M = 20, N = 16, L = 64)

Fig. 3 Scatter results of the proposed algorithm with SNR = -10 dB (M = 20, N = 16, L = 64) Fig. 4 RMSE comparison versus SNR (M = 20, N = 16, L = 64) Fig. 5 RMSE comparison versus SNR (M = 20, N = 16, L = 64)
下的性能对比。由图 6 可知，快拍数增加会改善所有算法的估计精度，同样可以看出，本文算法估计精度优于 ESPRIT 和 HOSVD 方法，且很接近 PARAFAC 算法。

本文算法在不同 N 的 RMSE 性能分别如图 7 所示。由图 7 的结果可知，天线数目增多会改善算法估计精度。这体现了 MIMO 天线数目增加使其自由度增加，从而提高了其探测精度。所提算法在不同 L 条件下的 RMSE 性能如图 8 所示。从仿真结果可以看出，快拍数的增加也会改善所提算法的估计精度。因为更多的快拍使得张量子空间分解更精确，从而角度估计也更准确。

5 结束语

为利用接收数据间的多维相关性，提高信噪比下参数估计的精度，本文提出了一种基于三维压缩感知的双基地 MIMO 雷达角度估计算法。首先构建接收数据的张量模型，使用 HOSVD 算法压缩高维张量，再对子张量的 PARAFAC 分解，最后通过构建完备字典的方法获得目标角度的估计。本文算法减轻了 PARAFAC 算法的计算复杂度，并可以获取自动配对的角度估计。在低信噪比场景下的估计精度方面要优于 ESPRIT, HOSVD 和 PARAFAC 方法。在信噪比较高时的估计精度非常适合大规模或者超大规模阵列信号处理。

参考文献:

文方青等：基于三维压缩感知的MIMO雷达角度估计算法

作者简介:

文方青（1988-），男，博士研究生，讲师，研究方向：雷达信号处理，目标探测与识别，E-mail：wfgz@163.com。

张弓（1964-），男，博士，教授，研究方向：雷达信号处理，目标探测与识别，E-mail：wfgz@163.com。

张劲东（1990-），男，博士研究生，研究方向：压缩感知，阵列信号处理。

夏道家（1988-），男，博士研究生，研究方向：雷达信号处理，目标探测与识别。

王鑫海（1988-），男，博士研究生，研究方向：雷达信号处理，目标探测与识别。

贾德（1938-），男，雷达专家，中国工程院院士，教授，博士生导师，研究方向：雷达系统，雷达信号处理。

（编辑：夏道家）